
 

Mediating Programming through Chat 
for the OLPC

Abstract 
We built a text-based programming environment that 
enables youth to design and implement a chat client for 
the One Laptop per Child XO. The environment allows 
users to program and chat simultaneously. We 
conducted two one-week workshops at a Girl Scout 
camp to test user engagement with the environment. 
In this paper, we examine how chat mediated the 
programming experience in a collocated environment 
and its implications for motivating participation in 
computing. 

Keywords 
Computer science education, programming, computer 
supported collaborative learning 

ACM Classification Keywords 
H5.m. Information interfaces and presentation, K.3.1 
Computer Uses in Education 

Introduction 
In Storm's Weekend with Rachel [1], Bruckman tells 
the story of how a young girl signed up for MOOSE 
Crossing, a text-based programmable online virtual 
world, on a Friday night. When Bruckman returns on 
Sunday night, the girl, Storm, had created many 
complex computational artifacts with the help of a new 
friend Rachael whom she met within the virtual 
environment.  

Copyright is held by the author/owner(s). 

CHI 2009, April 4 – 9, 2009, Boston, MA, USA 

ACM  978-1-60558-247-4/09/04. 

Jill P. Dimond 
Georgia Institute of Technology 

85 5th St NW 

Atlanta, GA 30332 USA 

jpdimond@cc.gatech.edu 

 

Sarita Yardi 
Georgia Institute of Technology 

85 5th St NW 

Atlanta, GA USA 30332 USA 

yardi@cc.gatech.edu 

 

Mark Guzdial 
Georgia Institute of Technology 

85 5th St NW 

Atlanta, GA 30332 USA 

guzdial@cc.gatech.edu 

 

 

 

 
 

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2

4465



 

Ten years later, with an increased dearth of women in 
computing [11] and an overload of visually engaging 
interactive sites on the Web, could this happen again in 
a solely text-based environment? More importantly, can 
contextualizing programming in a rich social 
environment engage girls in programming activities? 
Recent approaches to elicit girls’ interest in 
programming share Bruckman’s strategy in terms of 
using storytelling as a motivational context, but use 
more sophisticated user interface designs. Examples 
include Storytelling Alice, Rapunsel, and Scratch  
[6,7,2]—all of which employ a graphical user interface 
with drag-and-drop programming statements. This type 
of interface has been used mainly to avoid compilation 
errors as well as to ground the application in contexts 
with which girls are familiar.  

Our programming environment takes a different 
approach. We focused on a particular project—building 
a chat client for the One Laptop per Child XO—in a text-
based programming environment.  We leveraged two 
educational approaches: appealing to potential altruistic 
occupational desires that may be motivating for girls 
[4], and contextualizing them in activities which middle 
school girls are already engage in, social networking 
and chat [8].  Chat also has a collaborative affordance 
that can lead to a convergence of meaning and learning 
[10]. We gave them a simplified, functional chat client 
and instructed them to re-design the user interface for 
kids in developing countries.  Our design enabled girls 
to chat with each other while programming. The girls 
were also co-located in a classroom environment, 
enabling them to socialize virtually or through speech. 
The programming language was also text-based. Our 
long-term goals involve exploring innovative 
approaches to broaden interest in computer science; 

however, in this paper, we concentrate on the effects of 
implementing a combined chat and programming 
environment and exploring use, behavior, and 
engagement among participants.  

Our research question is: in what ways does chat 
embedded in the collocated environment mediate the 
programming experience?  More specifically, 1) Do 
participants chat and program at the same time?  2) Do 
they give or receive programming help over chat? 3) 
How are the effects of being able to chat reflected in 
their end product code and computational artifacts? 4) 
What opportunities for learning, collaboration, and 
encouragement are enabled? We first describe the 
context of where our study was situated, then present 
the programming environment, and last describe 
results of the pilot study and discuss how our 
environment shaped the programming experience.  

Location and Participants 
The study was conducted over two weeks at a Girl 
Scout camp in the U.S. in the Summer of 2008. The 
workshop was broken into two sessions, five days each, 
and each participant was given her own PC laptop to 
use during the week-long session. The camp director 
sent out an email prior to the camp informing parents 
of the study. We received 17 responses prior to the 
beginning of the camp; 15 parents and children 
confirmed participation and turned in consent forms 
during check-in. Seven were African American and eight 
were Caucasian with ages ranging from 10-15. A 
researcher lived at the camp for the two-week period 
and interacted with participants informally outside of 
the study. 

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2

4466



 

Programming Environment 
Participants programmed on locally networked PC 
laptops and were able to see their completed programs 
on the OLPC. The programming environment allows a 
simple chat client’s user interface (like MSN Messenger 
or Google GChat) to be redesigned with an embedded 
programming language. Programming commands and 
chat are entered into separate windows. In order to 
motivate participants, we asked them to improve the 
user interface for other children in different countries 
such as Haiti or Peru [5]. Influenced by Pane's HANDS 
event driven programming environment [9], we 
implemented a basic programming language with a 
simple debugger and limited complexity of the kinds of 
statements that could be made. Functions included 
changing chat properties such as the colors, images, 
sounds, and font as well as events that would trigger 
sound. The sequence of the programming statements 
also did not matter. Looping and advanced data 
structures were explicitly left out of the programming 
language. 

An example of the code that changes a property is:  

changeBackgroundImage “CloudyBG.jpg” 

This code changes the current background image to the 
image “CloudyBG.jpg'' (Note that the command is not 
case sensitive.) An example of an event is: 

if the chat text contains “lol” then 
play “laugh.wav”  

If the term “lol” is typed or received, the code instructs 
the program to play the “laugh.wav” file that plays a 
laughing sound. A library of images and sound files 

were included in the environment or participants could 
add their own images. Participants could modify three 
different chat interfaces: the standard chat list, Flower 
chat, and Circle chat.  Participants could begin with 
either of these environments and customize them into a 
potentially more complicated layout/design. Participants 
were given a handout containing different “codes” 
associated with the chat layouts.  We referred to the 
programming statements as codes because of the 
participants’ familiarity with MySpace codes, and 
referred to the activity they were doing as 
programming. 

Methods 
We built a logger into the programming environment. 
The server-side logger captured all activity, including 
server connections, disconnects, and chat messages. It 
also logged the identity of the sender and receiver and 
which participant left a chat with another person. Group 
chat was not supported. The client-side logger polled 
every two minutes and captured participants’ individual 
programs. The logger also captured when participants 
compiled their programs (by clicking “test” on the 
interface). Date/time stamps were logged for all activity 
on both server and client-side activity.  Logs were 
loaded into MySQL and analyzed for temporal 
participation, interpersonal conversations, and chat and 
programming content.   

Results and Discussion 
Participants sent 4,252 messages to one another over 
the two weeks. Table 1 to the left shows the total 
number of messages sent and received by each 

Screenshot of Flower chat with a chat 
window.  

Name  Sent  Received 

Allison  1216  665 

Sara  452  313 

Jennifer  301  791 

Madison  196  215 

Serena  176  175 

Cassandra  165  107 

Shelby  160  180 

Sierra  152  152 

Elizabeth  115  110 

Miranda  113  127 

Emily  105  111 

Tanya  100  116 

Heather  79  150 
Kyra  73  91 

table 1: Total number of 
messages sent and received by 
each participant 

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2

4467



 

participant1.  

 

figure 1: Coding (blue) and chatting (pink) date stamps show 
simultaneous activities 

Figure 1 illustrates the code date stamps marked in 
blue (compiled date stamps from the server logs) and 
the chat date stamps marked in pink.  When we 
disaggregate the graph into individual users’ chat times 
and code compilation times, the results suggest that 
participants were indeed chatting and coding 
simultaneously during both sessions.  

We also analyzed the number of codes generated by 
looking at the date stamps collected every two minutes 
by the logger and self compiled programming 
statements. Figure 2 illustrates the lines of codes over 
time for one participant, Cassandra. Cassandra 
generated a lot of code on the first day but on the 
second day and third day, she decided to start over. 
From researcher’s observation, she decided to use 
                                                   

1  Names changed to protect identity 

notepad to save portions of code that she thought she 
might want to use for later and utilized the cut and 
paste functions. We can reveal more interesting 
programming behaviors and themes from a preliminary 
manual content analysis of the type of messages sent.  

 

figure 2: Lines of code over time for one participant 

Help-seeking and Social Support 
We observed that participants sometimes asked one 
another for help as well as reported what they were 
doing currently (i.e. “I’m trying the CircleChat right 
now”) as if to elicit shared situated support [1]. The 
following is an example of how two participants 
collaborated to successfully program the sound feature. 

Jennifer: Type the animal that is commonly known to 
chase mice! 
Cassandra: cat 
Jennifer: awh….. my computer was supposed to make 

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2

4468



 

noise. 
Jennifer: so sad. 
Jennifer: Hmm…. Cat 
Cassandra: maybe it only works when you type it 
Jennifer: nope. Still no noise. 
Jennifer: cat…. cat…  nope…. 
Cassandra: check your code 
Jennifer: OkeyDokey! 
Jennifer: kitten…  Oh well…. Can you see the smiley? 
Cassandra: let me try…. probably 
Cassandra: cat 
Cassandra: see now it works…. try it now 
Jennifer: cat  

When we index this conversation into the date stamps 
in the client code, we can see that Jennifer had typed: 

if teh chat text contains "cat" then play 
"meow.wav" 

The debugger did not catch the misspelling of the word 
“the” and Jennifer was stuck.  At this instance, we see 
that Cassandra had already successfully typed in six 
different sound programming statements and could 
help Jennifer debug hers. Even though Jennifer and 
Cassandra were sitting next to each other, they used 
the chat client and verbally to test functions and to 
support one another to make the sound effect function 
correctly. 

In some cases, we observed a tension between chatting 
and programming, where participants preferred not to 
do both at the same time: 

Allison: heeeeeeeeeeeeeeeeeelllllllllllllllllllooooooooooo 
Madison: can i talk 2 u wen i'm finished programing? 

Madison: can i talk 2 u later 
Allison: fine 
Madison: i'm writing down codes 
 
Again, they were in the same room, but used chat to 
reinforce a sense of presence and awareness of their 
programming activities. We also observed interplays 
between frontchannel and backchannel “collaboration in 
the air” [3]. After the exchange between Cassandra and 
Jennifer, the whole class heard them play the “meow” 
sound and asked them aloud “What was that?! How did 
you do it?”  The girls would then flip through the code 
handout to look for a way to add sound to their chat or 
ask the researcher for help. 
 
Programming and Play 
Programming sometimes became playful.  Brooke 
programmed a sound file “ugh.wav” to play when 
typing the word “ugh”. Brooke would then type or say a 
boy’s name she thought was cute and then Allison 
would respond by typing the word “ugh”, initiating the 
“ugh” sound and both of them would laugh. This burst 
of engagement between them lasted for half an hour 
(and at the irritation of other participants in the room.) 
 
Bruckman attributes part of Storm and Rachel’s 
motivation to learn with their ability to connect their 
activities to popular culture. Bruckman argues that 
serious learning is not inconsistent with play and 
asserts the importance of designing “situated support” 
into learning contexts [1].  However, our study was 
conducted in a semi-structured environment with a 
specific task. It is not clear in what ways the 
environment might be extended to youth’s natural, 
informal use of the Web.  

Serena is chatting and programming at 
the same time. 

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2

4469



 

Conclusion and Future Directions 
Programming a chat client for the OLPC utilized two 
contexts to motivate the Girl Scouts: designing for the 
OLPC and the ability to chat concurrently while 
programming.  We examined the effects of 
programming while chatting and found preliminary 
results that point to how chat worked not only as a 
motivational piece, but as a tool for the girls to support 
one another in learning, collaboration, and 
encouragement. 

We also did not measure learning of computer science 
content and how chatting and programming might 
differ from traditional classroom pedagogy. We 
observed that participants reflected on what they were 
doing on one level and whether or not they enjoyed the 
activities. However, there was less evidence of how the 
activities may influence long-term interests in 
computing related courses or careers. For future 
directions, we aim to explore how the role of the OLPC 
context influences participants’ motivation, what 
programming concepts the users actually learned, a 
comparison of collocated chat classroom environments 
compared to a completely virtual environment, how the 
text programming interface differs from graphical user 
interfaces, and examine how the activity influences 
participants’ desire to pursue computing. 

Acknowledgements 
This work is supported by NSF BPC #0634629. 

References 
[1] Bruckman, A. “Situated Support for Learning: 
Storm's Weekend With Rachael.” The Journal of the 
Learning Sciences 9.3 (2000): 329-372. 

[2] Eastmond, Evelyn. “New Tools to Enable Children 

to Manipulate Images Through Computer 
Programming.” 2006. 

[3] Harel, I., and S. Papert. Constructionism. ABLEX 
Pub. Corp. 

[4] Jozefowicz, D. M., B. L. Barber, and J. S. Eccles. 
“Adolescent work-related values and beliefs: Gender 
differences and relation to occupational aspirations.” 
Paper presented at Biennial Meeting of the Society for 
Research on Child Development (1993). 

[5] Kafai, Y. B. Minds in Play: Computer Game Design 
as a Context for Children's Learning. Lawrence Erlbaum 
Associates, Inc. Mahwah, NJ, USA, 1995. 

[6] Kelleher, C., R. Pausch, and S. Kiesler. “Storytelling 
alice motivates middle school girls to learn computer 
programming.” Proceedings of the SIGCHI conference 
on Human factors in computing systems. ACM Press 
New York, NY, USA, 2007. 1455-1464. 

[7] Ken Perlin, M. F., and A. Hollingshead. “The 
Rapunsel Project.” Virtual Storytelling: Using Virtual 
Reality Technologies for Storytelling; Third International 
Conference, ICVS 2005 Strasbourg, France, November 
30-December 2, 2005 Proceedings. Springer, 2005. 

[8] Lenhart, A., and Pew Internet & American Life 
Project. Social Networking Websites and Teens an 
Overview. Pew/Internet, 2007. 

[9] Pane, J. “A Programming System for Children that 
is Designed for Usability.” Proceedings of the First ESP 
Student Workshop. 1997. 15-22. 

[10] Roschelle, J. (1992). Learning by Collaborating: 
Convergent Conceptual Change. The Journal of the 
Learning Sciences, 2(3), 235-276. 

[11]  Vesgo, Jay. “Interest in CS as a Major Drops 
Among Incoming Freshmen.” Computing Research 
News 17 (3) (2005). 

 

CHI 2009 ~ Spotlight on Works in Progress ~ Session 2

4470


